Short Course: Solving PDE’s on Overlapping Grids
with the Overture Framework

Bill Henshaw

Centre for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA, USA —— 04551

www.1llnl.gov/casc/Overture

Initially presented at DAMPT, University of Cambridge, December 2004.

Acknowledgments

Supported by
Department of Energy, Office of Science
MICS Program: Mathematical, Information, and Computational Sciences
Lawrence Livermore National Laboratory research and developement funding

Current Overture developers
Kyle Chand
Bill Henshaw

Overture and the CG PDE solvers are available for download

from

www.lInl.gov/CASC/Overture.html

Documentation and installation instructions are also available at the above web
site.

Short Course Summary

An Overview

Main features of Overture

Overlapping grids.
A one-dimensional overlapping grid problem.

Approximating derivatives on curvilinear grids.

Using the A++4/P++ Array Class
Array operations.

Parallel array operations.

Overview of the Main Overture Classes

The Overture graphics interface: windows, menus, dialogs and mouse

buttons
Mapping's
Grid's and GridFunction’s

Operators

Building component grids using the native geometry capabilities

CAD fixup and maodification
Fixing and modifying CAD files with rap

Component Grid Generation and CAD

Component grid generation on CAD geometries

mBuilder: the mapping builder
hype: the hyperbolic grid generator
Overlapping Grid Generation
Ogen: the overlapping grid generator
A Primer for the High-Level Interface to Grids, Grid-Functions and
Operators
MappedGrid examples
Overlapping grid examples

Adaptive Mesh Refinement and Overlapping Grids

Block structured mesh refinement

AMR and overlapping grids
AMR components of Overture

AMR performance and examples

Solvers

Oges: Overlapping Grid Equation Solver

Ogmg: Multigrid solver for Overlapping Grids

fast solution of elliptic boundary value problems

The CG (Composite-Grid) Suite of PDE solvers

cgad : advection-diffusion solver.

cgins : incompressible flow.

cgens : compressible flow with adaptive mesh refinement.
cgmx : Maxwell's equations.

cgmp : multi-domain multi-physics problems

Movies:

e model two-stroke engine

e shock hitting a collection of (rigid-body) cylinders (Euler with AMR).
e cylinders falling in a channel (INS with MG).

Overview: Overture is a collection of C++4 classes that can
be used to solve partial differential equations on structured,
overlapping and hybrid grids.

Key features:

provides a high level interface for rapid prototyping of PDE solvers.
built upon optimized C and fortran kernels.
provides a library of finite-difference operators: conservative and non-conservative,
2nd, 4th, 6th and 8th order accurate approximations.
support for moving grids
support for block structured adaptive mesh refinement
extensive grid generation capabilities
CAD fixup tools
interactive graphics and data base support.
PDE solvers built upon Overture include:
e cgins : incompressible flow.
e cgcns : compressible flow with adaptive mesh refinement.
ogen : overlapping grid generation.
cgmx : Maxwell's equations.

cgmp : multi-physics problems

OverBlown Oges Ogmg
INS, CNS Linear Solvers Multigrid
Ogen Ugen
Overlapping Unstructured

Mappings CAD fixup rap, hype Gl
Grid Generation mbuilder

i g S aa
ER S N inw R R

10

— T
11T
11
b iS
y
||-'_]\V___
2 =
&
- * il
HH
r T

N\

Solutions coupled by interpolation

I

T T

J

]

Sample 3D overlapping grids

‘--

ST

el

AN I,

SN Nrrrrrarrritd
g 4

o
Gt

S
S
<5
TS
e
SRS,

Sy
et
AL

pas!
L
oS Soces
s
o
3

5
5
=

o

s
Th
N

\{\

L
A
i

i
5

11

.. T
PR
éoo%oo i
% G
S
000000#»0~
00#0#

e5siitd

)
X5

o

Components of an Overlapping Grid

e » interpolation

o upused .
4 » ghost point

physical boundary

bc(2,2)

ooooloooo

Gy

bc(1,1) bc(1,2) be(2,1)

A One-Dimensional Overlapping Grid Example:

U—l U() U1 U2 UN1_|_1

Vo Vo Wi

Tq e wd

To solve the advection-diffusion equation

Ut + aUp = VUgpy x € (0,1)
w(0,t) = go(t), wux(l,t) = g1(t) (boundary conditions)

u(zx,0) = uo(x) (initial conditions)
introduce grid points on the two component grids,

azgl) = o + 1Ax1, i=-1,0,1,...,N1+1, Azxy = (xq —xa)/N1

2P —we+ G+ DA, j=—1,0,1,...,Na+1, Aws = (w, —2c)/Na

and approximations U* ~ u(w(l),nAt), VI u(a:EQ),nAt).

7

Us --- Un,+1

T N

Voo Vo Voo VN, VNo+1
The equations discretized with forward-Euler time-stepping and central differences
(UMt — UM /At = —aDoU + vDyD_U i=1,2,...,N;
(VM — VM) /At = —aDoV* +vDyD_Vj* j=0,2,...,Ns
Uy =9(tn), DoVn, = g1(tn) (boundary conditions)
U? = uo(z;) 1=0,2,...,N;1 +1 (initial conditions)

Vjo = uo(z;) j=-1,0,2,...,Na+1 (initial conditions)

where a = (x4 — a:(_Qi)/A:vg B = (xc— azg\}i_Q)/Aazl and

DoU;* = (U, —UY)/ (2Az1),
DLUT = (UL, — UP)/Aay,
D_U" = (U -U"1)/Az1

Interpolation between overlapping grids:

Up Uy Uz --- Un,

Vo Vi Va

Le Ld

When solving Poisson’s equation, Au = f with a scheme that is O(h??) the
width of the interpolation formula should be

e width=2p + 1 if the overlap distance is d = O(h).
e width=2p if the overlap distance is d = O(1).

Thus a second-order accurate scheme will normally require 3-point interpolation
(quadratic interpolation).

Note: For a first order equation, u; + u, = 0, 2-point interpolation is sufficient
for 2nd-order accuracy when the overlap distance is O(h).

Overture supports a high-level C+4+ interface (but is built
mainly upon Fortran kernels):

Solve u; + aug + buy = V(Uyy + Uyy)

// create a composite grid
getFromADataBaseFile(cg, "myGrid.hdf");

// create a grid function

// operators

u.setOperators(op) ;

float t=0, dt=.005, a=1., b=1., nu=.1;

for(int step=0; step<100; step++)

{
ut=dt*(-a*u.x()-b*u.y()+nu*x(u.xx(O)+u.yy())); // forward Euler
t+=dt;
u.interpolate();
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);

u.finishBoundaryConditions() ;

Spatial approximations to derivatives:

Each grid is defined by a mapping x = G(r) from the unit square r € [0, 1]¢ in d-dimensions to
physical space x € R¢.

Derivatives can be defined by the chain rule (with r = (r,s), x = (z,y)). For example in
two-dimensions,

Ur = TxUr + SgUs

Ay = (7“3; + Tz)urr + (33; + Sg)uss + 2(7”:U5—+—74y3y)u7“s + (7“:12:10 + ryy)ur + (3:13:13 + Syy)us

Approximations to the derivatives using the mapping-method simply approximate the r
derivatives in the above expressions. For example, fourth order approximations are

1
ur = Dor(1 — EAT2D+7~D_7=)U

1
Urr = Dor(1 — EAr2D+TD_r)u

The inverse Jacobian derivatives r;, 7y, Sz, Sy are given by the mapping. Higher derivatives
such as rzz = (rz)z, Syy = (Sy)y are approximated in the same manner as for u.

Conservative or finite-volume type discretizations are based on the self-adjoint form

1
V-u= 7 ((JVXT’ -u)r + (JVxs - u)s)
J = det(0x/0r) (Jacobian)

Advantages of Overlapping Grids

structured grids permit accurate and efficient algorithms.

boundary fitted grids allow high fidelity representations of the geometry.

Cartesian component grids can be treated very efficiently.

advantageous for moving geometry.

grid generation is easier when grids are allowed to overlap, compared to generating
multi-block structured grids.

The ability to generate grids for complex geometry is important to get good
accuracy on many types of problems.

Some References: Theory of Numerical Methods

The stability and accuracy theory for finite difference approximations to
initial-boundary-value problems for overlapping grids is primarily founded upon the well
established theory for finite difference methods for a single grid. Stability theory is often

divided into methods based on energy estimates and methods based on mode analysis
(GKS theory).

For a discussion of energy-estimates and GKS theory see, for example,

Gustafsson, Kreiss and Sundstrom, Stability Theory of Difference Approximations for
Mixed Initial Boundary Value Problems. I, 1972 [3].

Gustafsson, Kreiss and Oliger, Time Dependent Methods and Difference Methods,
1995 [4].

Strikwerda, Finite Difference Schemes and Partial Differential Equations, 1989 [15].

In many cases, the analysis of a nonlinear, variable-coefficient PDE in general geometry
can be reduced to the consideration of a constant-coefficient half-plane problem.

For a discussion of well-posed problems and this reduction see, for example,

Kreiss and Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations,
1989 [12]

Some journal references related to Overture solvers:

For a general discussion of the overlapping grid approach as well as issues related
to the order of accuracy of interpolation see

G. Chesshire and W.D. Henshaw, Composite Overlapping Meshes for the
Solution of Partial Differential Equations 1990 [1].

A conservative interpolation method is developed in

G. Chesshire and W.D. Henshaw, A Scheme for Conservative Interpolation on
Overlapping Grids 1994 [2]

Issues related to the determination of boundary conditions for high-order
accurate schemes are considered in

W.D. Henshaw, H.-O. Kreiss and L.G.M. Reyna, A Fourth-Order Accurate
Difference Approximation for the Incompressible Navier-Stokes Equations,
1994 [8].

W.D. Henshaw, A Fourth-Order Accurate Method for the Incompressible
Navier-Stokes Equations on Overlapping Grids, 1994 [6].

Some journal references related to Overture solvers (cont’d):

The AMR scheme for overlapping grids with applications to high-speed reactive

flow are covered in

W.D. Henshaw and D.W. Schwendeman, An Adaptive Numerical Scheme for
High-Speed Reactive Flow on Overlapping Grids, 2003 [10]

The development of a multigrid solver with near text-book convergence rates is
described in

W.D. Henshaw, On Multigrid for Overlapping Grids, 2004 [9].

A Short History of
Composite/ Chimera/ Overset/ Overlapping Grids

Volkov, circa [1966] developed a Composite Mesh method for Laplace’s equation on
regions with piece-wise smooth boundaries separated by corners. Polar grids are fitted
around each corner to handle potential singularities.

Starius, circa [1977] (student of H.-O. Kreiss) considered Composite Mesh methods
for elliptic and hyperbolic problems — introduces a hyperbolic grid generator.

Steger, circa [1980] independently conceives the idea of the overlapping grid,
subsequently named the Chimera approach after the mythical Chimera beast having a
human face, a lion's mane and legs, a goat's body, and dragon’s tail. NASA groups
develop grid generator PEGSUS, hyperbolic grid generation and flow solver Overflow
(Steger, Benek, Suhs, Buning, Chan, Meakin, et. al.)

[1980] B. Kreiss develops overlapping grid generator which subsequently leads to the
CMPGRD grid generator [1983] (Chesshire, Henshaw) later leading to the Overture set
of tools [1994].

A++/P++ Arrays...

A++ /P++ : Multidimensional Arrays for C

Primary developer: D. Quinlan; help from K. Brislawn, B. Gunney and B. Miller.
Fortran90/matlab style array operations.

Serial and distributed parallel arrays.

Code is compiled with A++ header files to run on serial machines.

Code is compiled with P++ header files to run on parallel machines.

Arrays can be passed to Fortran subroutines (Fortran storage order)

class Index: Index I(base,count,stride) : for indexing arrays

class Range Range R(base,bound) : for dimensioning (or indexing arrays)

class intArray, floatArray, doubleArray : multidimensional arrays (maximum 6
dimensions) distributed across selected processors (also referred to as
intDistributedArray, floatDistributedArray, doubleDistributedArray).

intSerialArray, floatSerialArray, doubleSerialArray: serial arrays, duplicated across

all processors

A++ : Code Example

Range R(0,9); // define a range R=0..9

doubleArray a(R,R), b(10,10); // declare and dimension arrays

Index 1(1,8), J(1,8); // define two Index's: 1={1,2,...,8}, J={1,2,...,8}
b=1.; // array assignment

// In the above statement b(l+1,J) is itself an array that is a "view" of b
// stencil operation by scalar indexing:
for(int j=J.getBase(); j<=J.getBound(); j++)
for(int i=I.getBase(); i<=l.getBound(); i++)
a(i,j) = .25*%(b(i+1,j) + b(i,j+1) + b(i-1,j) + b(i,j-1));

Using the where statement in A++

realArray x(10,10), u(10,10);
Range 1(1,8), J(1,8);

Fortran

Indirect addressing with A++

RealArray u(10), v(3);
mtArray ia(3);

1a(0)=2; ia(1)=4; ia(2)=7;
Range I(2);

Passing A++ arrays to Fortran

extern "C" { void myfortran_(int & m, int & n, real & u); }

realArray u(20,10);

Fortran

P++ : parallel multi-dimensional arrays

> Arrays are distributed across selected processors using a Partitioning object.

¢ Internal ghost-boundaries are added at the interfaces between processors.

> P—++ uses Multiblock PARTI (A. Sussman, G. Agrawal, J. Saltz) for block structured
communication with MPI (ghost boundary updates, copies between different distributed
arrays)

> A serial array (local array) can be accessed from each processor.

> Caveat: Currently best results are obtained by operating on the local arrays and
explicitly calling updateGhostBoundaries to update the ghost boundaries.

realDistributedArray u

4 processors

P++ : Sample Code

Range P(1,5); // Range of processors to use
// object that defines the parallel distribution

partition.SpecifylnternalGhostBoundaryWidths(1,1);

uLocal = cos(uLocal)+5.; // operate on local array

// call fortran with local array:
myFortranRoutine(*ulLocal.getDataPointer(),...);

// update ghost boundaries between processors

Graphics, Mappings, Grids, GridFunctions,

Operators, CAD...

The Overture Graphics Interface

Built upon OpenGL and Motif

Mouse driven rotation, zoom, and picking (selection).

High-level routines for plotting grids, contours, stream-lines.

Interactive plotting by C++ calls.

User defined menus and dialogs.

Program control remains generally with the application, the GUI event loop is
entered only when input in desired.

OpenGL calls are restricted to the Graphics Interface classes. Motif is not

exposed, usage is restricted to a few functions.

- Overture Graphics Interface

File Wiew Uptions

Help

Mouse Picking

ﬂ ﬂ s Mo Cperation « Join W/lLine Segment
il il + Build Point

ol e

w Move Curve Endpoint

~ Query Foint ~ Snap To Intersection

“* Interpolate Curve v Split

o Circular Arc « Edit SubCurve

~ Hide SubCurve

Assemble | Show Al

Show Used | Hide Al

Hide Unused |

_| Current Curve [T SubCurves

New: Point: {x, y) [13.991570e-01 0

p

[@HA Shell - Konsole <2
File Sesslons Settings Help IQ

stop pick . .

pause

.. main screen Dialog
Selected

Selected point #3

Selected point #4

Selected point #5

-4 Commands
File

[
Help

| [&lpaint for interpolation 7 A
‘stop picking

Command:§

-".
| i

m > 4’ / : B kscd ¥ mmxp . (.Ca\culf.:ﬂor)
farad < A a P emacs@Mux50 Inlg: | X (MMXP - Bill Hensh: | % linerBuilder pdf

command window

Features of the graphical user interface

User defined dialog windows that can contain pulldown menus with push or toggle buttons,
option menus, text labels (for inputting strings), push buttons, and toggle buttons.

Multiple graphics windows and a single command window with a scrollable sub-window for
outputting text, a command line, and a scrollable list of previous commands.

Rotation buttons ﬂ , | , ﬂ ,... Which rotate the object on the screen about fixed x,
y, and z axes (the x axis is to the right, the y-axis is up and the z-axis is out of the screen).

Translation buttons aﬂ ﬁ IE:I, I:E::I, which shift the object on the screen along a

given axis.

Push buttons for making the objects bigger: E, or smaller: E, and a reset button:

@ to reset the view point, and a clear button to erase all objects on the screen.

A push button _$-to set the rotation center.

A rubber band zoom feature.
Mouse driven translate, rotate and zoom.

A pop-up menu that is active on the command and graphics windows. This menu is
defined by the application (= user program).

Static pull-down menus (file, view, and help) on the graphics windows. Here, the screen
can be saved in different formats, clipping planes and viewing characteristics can be set,
annotations can be made (not fully implemented), and some help can be found.

Static pull-down menus (file and help) on the command window. Here command files can

be read/saved, new graphics windows can be opened, the window focus can be set, and
the application can be aborted.

A file-selection dialog box

The option of typing any command on the command line or reading any command from a
command file. All commands can be entered in this fashion, including any pop-up or
pull-down menu item or any of the buttons, x+r, y-r, x4+, y+, bigger, etc.

Recording or retrieving a command sequence in a command file.

Mouse buttons and selection

The mouse driven features are summarized in table 1.

Modifier

Mouse button Function

left | picking

middle | rubber band zoom

right | pop-up menu

<SHIFT>

left | translate

<SHIFT>

middle | rotate around the x & y axes

<SHIFT>

right | zoom (up & down) and z-rotation (left & right)

Table 1: Mouse driven features.

Geometry, Grids and GridFunctions: Overview

. used to define continuous transformations. Example: the
transformation from the unit square to an annulus.

. defines a grid for a Mapping; contains the grid points, Jacobian
derivatives etc.

. holds field values on a MappedGrid.
Example: the density or temperature at each point on the grid. Derived from

an A+-+/P++ array.

. a list of MappedGrid's. Example: the grids forming an
adaptive mesh refinement level.

. a list of MappedGridFunction's.

. a GridCollection with interpolation information that
represents an overlapping grid.

: holds field values on a
CompositeGrid.

A Mapping defines a continuous transformation

Each mapping has an optimized map and inverseMap

Mapping

I

domainDimension
rangeDimension
map(r,x,Xxr)
inverseMap(x,r,rx)
boundaryConditions
singularities

unit square

SquareMapping
AnnulusMapping
SphereMapping
HyperbolicMapping
EllipticTransform
MatrixMapping
RevolutionMapping
etc.

A MappedGrid holds the grid points and other geometry info

—

MappedGrid

gridindexRange _ .
Mapping «+ — Mapping that defines the geometry

vertex < grid points
vertexDerivative < jacobian derivatives optionally computed
cellVolume geometry arrays

faceNormal

A GridCollection holds a list of MappedGrids

base grids /<; g

refinement grids

GridCollection

numberOfGrids
operator [intg] « | access to a MappedGrid, g=0,1,..

refinementLevellint] « — GridCollection for a refinement level

A MappedGridFunction holds solution values

derived from an A++ realArray

realMappedGridFunction which implies it inherits all A++ operators

numberOfComponents «—— scalar, vector, 2-tensor, ..
MappedGrid

MappedGridOperators _ _
Grid functions can be vertex-centred,

X,Y,Z,XX,... derivatives cell-centred, face-centred etc.

MappedGrid mg(mapping);
realMappedGridFunction u(mg);
u=1.;

A GridCollectionFunction is a list of MappedGridFunctions

realGridCollectionFunction

realMappedGridFunction

realMappedGridFunction

GridCollection gc(...);
Range all;

realGridCollectionFunction u(gc,all,all,all,2);
u=1.;

for(int grid=0; grid<gc.numberOfGrids(); grid++)
u[grid]=1.;

Overview of the Operator Classes in Overture

Operators define discrete approximations to derivatives and boundary conditions.

e approximations for 0, 9y, 0, Ozz, ,.., A, V - (aV), (soon higher derivatives too)
e orders of accuracy 2,4,6,8

e finite difference and finite volume approximations

e operators can be applied explicitly on a grid function or the sparse matrix

representation of the operator can be formed.

Operators can be used at different levels
CompositeGridFunctions: u.x() — all points on all grids
MappedGridFunctions: w.y() — all points on one grid

function call: derivative(u,x0perator,...) (avoids creation of some temporary

arrays)

macros or statement functions for evaluation point by point in C or Fortran codes

Operators

The Operator classes define differential operators and boundary conditions.
- 2nd/4th order approximations plus some conservative approximations

MappedGrid mg(sphere);
MappedGridOperators op(mg);
floatMappedGridFunction u(mg), v(mg), w;

v=ux()+uy(); . ———— Compute the derivatives directly

w=u.laplacianCoefficients(); . ~ — Form the sparse matrix for the
differential operator

Overview of the Geometry Capabilities in Overture

e Curves, surfaces and volumes are represented with the Mapping class
e Many analytic representations including rectangle, annulus, cylinder and sphere
e Spline and NURBS representations are available.

e Transfinite interpolation can be used to interpolate curves or surfaces to form

2D-regions or 3D volumes.

e Transformations such as rotation, scaling, translation, body-of-revolution,

stretching-grid-lines, sweeping, and extruding are also represented as a Mapping.

e Mappings can be composed: e.g. compose a annulus-mapping with a
stretch-mapping to get a new mapping for an annulus with clustered grid-lines.

e 3D surfaces can be intersected to form one or more curves of intersection.

Demo: Creating Mappings...

e show different types of mappings
e composition, stretching, body of revolution...

Repairing and Modifying CAD Geometry

e Overture can read the CAD file format.

e Geometry is usually defined as a B-Rep (boundary representation) consisting
of a collection of patches. Each patch is often a trimmed NURBS
(non-uniform rational b-spline).

e There are problems that may exist in the CAD representation such as gaps or
overlaps between patches and mistakes in trimming curves.

e The Overture rap program (an outcome from the Rapsodi project) can be
used to fix and modify the CAD geometry.

o A Is constructed that defines a water-tight surface.

e The CAD B-Rep and global-triangulation are used when building structured
surface grids.

CAD toMesh to Solution with Overture

!:Htl!%Q'&Rll!ii;tll!}f:r

B

Global triangulation

Incompressible flow.

49

Demo: Cleaning-up CAD...

Run “rap asmoNoWheels.cmd” (in Overture/sampleGrids)

e clean up a CAD geometry for the asmo model car.
e generate the topology (fix gaps and overlaps between patches).
e build a water-tight surface triangulation.

Grids on CAD, Ogen...

Constructing Grids on CAD Geometry

e mBuilder and rap can be used to build grids for CAD geometries.

e Surface grids are constructed first. Volume grids are generated starting from
the surface grids.

e Grids are usually built using the hyperbolic grid-generator hype.

e Given a starting curve on the surface, a grid is generated by marching over
the surface.

e Volume grids are constructed by marching, starting from a surface grid.

e Grids can be smoothed with an elliptic smoother. Grid lines can be clustered
(stretched).

Demo: Constructing Grids on CAD geometries...

Run “mbuilder asmoBody.cmd”, “mbuilder asmoFrontWheel.cmd”,
“mbuilder asmoBackWheel.cmd” (in Overture/sampleGrids)

e Build grids on the surface of the asmo car (with wheels removed).
e Define a starting curve; build a surface grid by matching; build a volume grid

by marching.

Generating Overlapping Grids with Ogen...

The basic steps to follow when creating an overlapping grid are
e create mappings that cover a domain and overlap where they meet.

e generate the overlapping grid (the executable named ogen calls the grid
generator Ogen).

e save the grid in a data-base file.

" lpody of revolution.
ic

=
A snapshot of the overlapping grid generator Ogen

Generating Overlapping Grids with Ogen...

e Ogen determines the and interpolation information for an overlapping
grid.

e Input to Ogen is a set of overlapping grids, boundary conditions and
shared-boundary information.

e Options: , are specified according to
the intended equations and order of accuracy.

e Boundaries are classified as physical boundaries, periodic or interpolation.
e Physical boundaries are used to cut holes in overset grids.

e The overlap is usually to reduce the number of computational
points.

Sample ogen command file...

* make a grid for a square
create mappings
rectangle

mappingName
square

lines
11 11
boundary conditions
1111
exit
exit
*

generate an overlapping grid

square
done
change parameters
gnost points
a
222222
exit
compute overlap
exit
*
save an overlapping grid
squarel0.hdf
squarel0
exit

An Ogen command file (script) with embedded peril...

e Any line containing a semi-colon ;" is sent to the perl interpreter and discarded.
e Any line with a “$"” is evaluated by perl to replace variables.

* $nx $ny N

* Random cylinders in a channel boTnld:ir}i conditions
*

create mappings mappingName

* ~ backGround

* Increase $factor to increase the resolution: exit

factor=8; =" multiCylRandom8.hdf"; T T T T T ST T T T T I T T T T T T
i actor $name="multiCylRandom * Define a perl function to build and AnnulusMapping

* perl function to convert the * usage: makeAnnulus(radius,xCenter,yCenter,name)
* number of grid points by $factor I output: $commands
{ local($n1,$n2,$n3)=0_; \ sub maxeAannuius
$nx=int(($n1-1)*$factor+1.5);\ { local($radius, $xc,$yc,$name)=0_; \
$ny=int(($n2-1)*$factor+1.5);\ $outerRadius=$radius+.15/$factor;\
Sy int((Sn3.1)*Sfactor L1500\ Snxt = int($Snx*Sradius/ 25+.5); \
$annulusMappingNames = $annulusMappingNames .
* $commands = \
rectangle "Annulus\n" . \
set corners "lines\n" . \
0 -2.2.-1515 " $nxr $ny\n" . \
lines "inner and outer radii\n" . \
getGridPoints(161,121); " $radius $outerRadius\n" . \

57

"centre\n" . \

" $xc $yc\n" .\

"boundary conditions\n" . \
" 1-110\n" . \
"mappingName\n" . \

" $name\n" . \

"exit\n"; \

!

getGridPoints(81,7);

* fix lines in the normal direction
* since we reduce the radius:
inyz?;

*

makeAnnulus(.125,-1.2,0.2,annulusl);
$commands

%k

makeAnnulus(.1,-.8,-.5,annulus2);

$commands
*

makeAnnulus(.0625,-.45,.45,annulus3);

$commands
*

... (lines left out here)
*

makeAnnulus(.13,-.4,-.9,annulus10);

$commands
*

makeAnnulus(.19,-.1,.8,annulus11);

$commands
3

*
exit
generate an overlapping grid
backGround
$annulusMappingNames
done
change parameters
* choose implicit or explicit interpolation
* interpolation type
* implicit for all grids
ghost points

all
222222

exit
compute overlap

exit

*

save an overlapping grid
$name
multiCylRandom

exit

Demo: Generating an Overlapping Grid with Ogen...

e circle-in-a-channel example by hand.
e Build a grid for a valve, port and cylinder using the native geometry tools. This
example illustrates the building of a body-of-revolution and the creation of a

special “join” mapping where the valve-stem intersects the port.

59

Primer Examples: Using the High-Level Interface

Overture is distributed with a collection of Primer examples that can be used as
a starting point for creating new solvers.
o solving problems on single MappedGrid.

e mappedGridExample2: Solve a convection diffusion equation on a single

curvilinear grid.

e example 6: Solve a convection diffusion equation on an overlapping grid.

e example 7: Solve an elliptic boundary value problem.

mappedGridExample2: Solving u; + au, + bu, = vAu. Setup...

#include "Overture.h"
int
main(int argc, char *argv[])

{

Overture::start(argc,argv); // initialize QOverture

AnnulusMapping annulus;

MappedGrid mg(annulus) ; // MappedGrid for a square
mg.update() ; // create default variables

realMappedGridFunction u(mg) ;

Index I11,I12,1I3;

getIndex(mg.dimension() ,I11,I2,I3); // assign I1,12,I3 from dimension
u(I1,I2,13)=1.; // initial conditions

MappedGridOperators op(mg) ; // operators
u.setOperators (op) ; // associate with a grid function

PlotStuff ps(TRUE, "mappedGridExample2"); // create a PlotStuff object
PlotStuffParameters psp; // This object is used to change plotting parameters

mappedGridExample2: u; + au, + bu, = vAu. Time-stepping...

real t=0, dt=.005, a=1., b=1., nu=.1;
for(int step=0; step<100; step++)
{
if(step % 10 == 0)
PlotIt::contour(ps, u,psp); // plot contours every 10 steps

// **xxx*x forward Euler time step *****
u+=dt*x(-a*u.x() -b*u.y() + nux(u.xxQO+u.yyQ));

t+=dt;

// apply Boundary conditions : u=0

int component=0;
u.applyBoundaryCondition(component,dirichlet,allBoundaries,0.);
// fix up corners, periodic update:
u.finishBoundaryConditions() ;

}

Overture: :finish();
return O;

}

Example 6: Solving a PDE on an overlapping grid

This example solves u; + auy, + buy, = v(uzy + Uy,) on an overlapping grid.

#include
#include
#include

int
main(int

{

"Overture.h"
"Ogshow.h"
"CompositeGridOperators.h"

argc, char *argv[])

Overture: :start(argc,argv); // initialize Overture

aString name0f0GFile="cic.hdf", nameOfShowFile="example6.show";

// create and read in a CompositeGrid
CompositeGrid cg;

getFromADataBase (cg,name0f0GFile) ;
cg.update() ;

Interpolant interpolant(cg); // Make an interpolant

Ogshow show(nameOfShowFile); // create a show file

CompositeGridOperators operators(cg) ; // operators for a CompositeGrid
// operators.setOrderOfAccuracy(4); // use this for fourth order

Range all;
realCompositeGridFunction u(cg,all,all,all,1); // create a grid function

u.setOperators (operators) ;
u.setName ("u"); // name the grid function

u=1.;

// initial condition

real t=0, dt=.001; // initialize time and time step
real a=1., b=1., viscosity=.1; // initialize parameters

char buffer[80]; // buffer for sprintf
int number0fTimeSteps=200;
for(int i=0; i<numberO0fTimeSteps; i++) // take some time steps

{
if(i % 40 == 0) // save solution every 40 steps

{

show.startFrame() ; // start a new frame
show.saveComment (0, sPrintF(buffer,"Here is solution %i",1));
show.saveComment (1,sPrintF (buffer," t=fe ",t));

show.saveSolution(u);

}

// *xx take a time step with Euler’s method ****
ut=dt*(-a*u.x() - bxu.y() + viscosity*(u.xx() + u.yy(0));

t+=dt;

u.interpolate(); // interpolate
// apply a dirichlet BC on all boundaries:
u.applyBoundaryCondition(0,BCTypes: :dirichlet,BCTypes: :allBoundaries,0.);

// for 4th order:
// u.applyBoundaryCondition(0,BCTypes: :extrapolate,BCTypes::allBoundaries,0.);

u.finishBoundaryConditions() ;

¥

Overture: :finish();
return O;

}

Here is solution 40
1=3.999959%9—01

—2.00
-200 -152 100 -0.50 .00 0.520

Figure 1: Results from example6.C, solve an advection-diffusion equation.

Example 7: Solve an elliptic boundary value problem

This example solves Au + u, = f with Dirichlet BC's on an overlapping grid.

#include "Overture.h"
#include "CompositeGridOperators.h"

#include "Oges.h"

int main(int argc, char *argv[])
{
Overture: :start(argc,argv); // initialize Overture
// create and read in a CompositeGrid
aString nameOf0OGFile="cic.hdf";
CompositeGrid cg;
getFromADataBase (cg,name0f0GFile) ;
cg.update() ;

// make a grid function to hold the coefficients

Range all;

int stencilSize=int(pow(3,cg.number0fDimensions())+1.5);
realCompositeGridFunction coeff(cg,stencilSize,all,all,all);
coeff.setIsACoefficientMatrix(TRUE,stencilSize) ;

realCompositeGridFunction u(cg),f (cg); // create grid functions:

CompositeGridOperators op(cg); // create some differential operators
op.setStencilSize(stencilSize);
coeff.setOperators(op);

coeff=op.laplacianCoefficients()+op.xCoefficients(); // here is the operator

// £ill in the coefficients for the boundary conditions

coeff.applyBoundaryConditionCoefficients(0,0,dirichlet, allBoundaries);
coeff.applyBoundaryConditionCoefficients(0,0,extrapolate,allBoundaries) ;
coeff.finishBoundaryConditions() ;

Oges solver(cg); // create a solver
solver.setCoefficientArray(coeff); // supply coefficients

// assign the rhs: u=0 on the boundary

Index I1,I2,1I3, Ibl,Ib2,Ib3;

for(int grid=0; grid<cg.number0OfComponentGrids(); grid++){
MappedGrid & mg = cglgridl;
getIndex(mg.indexRange () ,11,12,1I3);
f[grid] (I1,I2,I3)=1.;
for(int side=Start; side<=End; side++)

for(int axis=axisl; axis<cg.numberOfDimensions(); axis++){
if (mg.boundaryCondition() (side,axis) > 0){
getBoundaryIndex (mg.gridIndexRange () ,side,axis,Ibl,Ib2,Ib3);
f[grid] (Ib1,Ib2,Ib3)=0.;

solver.solve(u,f); // solve the equations
u.display("Here is the solution");

Overture::finish();
return(0) ;

Demo: Primer examples...

e mappedGridExample2: solve a PDE on a mappedGrid.
e movel: moving grid example.

69

Block Structured Adaptive Mesh Refinement

¢ Initially developed by Berger and Oliger (JCP 1984)

{» Extensions to the Euler equations by Berger and Colella (JCP 1989)

¢ AMR and overlapping grids considered by Brislawn, Brown, Chesshire and Saltzman
(1995), and Boden and Toro (1997)

< AMR in Overture has contributions from Brown, Philip and Quinlan.
Some Structured AMR frameworks

& AMRCLAW (LeVeque and Berger)

& Amrita (Quirk)

> Boxlib (Bell et.al., LBNL)

¢» Chombo (Colella et.al., LBNL)

¢ GrACE (Parashar)

¢ PARAMESH (NASA Goddard Space Flight Center)

¢ SAMRAI (Hornung et.al. LLNL)

Reference Tomasz Plewa’'s AMR page http://flash.uchicago.edu/~tomek/AMR

AMR regridding algorithm (Berger-Rigoutsos)

box is split into two

/ \
tagged cells initial box process is repeated

(1) tag cells where refinement is needed

(2) create a box to enclose tagged cells

(3) split the box along its long direction based on a histogram of tagged cells
(4) fit new boxes to each split box and repeat the steps as needed.

71

AMR on overlapping grids

AMR capabilities are being added to Overture for overlapping grids.

Some of the features are

AMR grids are generated in the unit square coordinates of each component
grid.

efficient handling of refinement grids on curvilinear grids.

support for higher order accurate methods (fourth-order, sixth-order,...) (not
complete yet)

updating refinement grids that meet at the overlapping grid boundaries.
retaining the efficiency of Cartesian grids.

saving and reading solutions and grids from a data base file in an efficient
manner (e.g. for post-processing and restarts).

interactive graphics.

Ovelrllapping Grids and AMR

Component grid 1,

base grid 1

Refinement grids

/

interpolate from

refinements of a different

base grid

Component grid 2,

base grid 2 T~

The basic AMR time stepping algorithm

PDEsolve(G, tgnal)
{G (input): current grid
t:=0; n:=0;
ul := applylnitialCondition(G);
while t < tfpa
if (n mod Nyegria == 0)
ej := estimateError (G, uf’);
G* :=regrid(G,e;);
uf := interpolateToNewGrid(uf, G, G*);
G:=G"; u ;= u;

end

At := computeTimeStep(G, ul’);
u?—H := timeStep(G, u, At);
t:=t+ At; n:=n-+1;
interpolate(G, ul’);

applyBoundaryConditions(G, ul’, t);

AMR components of Overture

class Regrid
e generation of aligned AMR grids using the Berger-Rigoutsos algorithm.
e generation of rotated AMR grids using the Berger algorithm.
e Boxlib is used for domain calculus (e.g. intersecting two boxes).

class ErrorEstimator
e defines standard error estimators based on first and second differences.
e smoothing of the error and propagation across overlapping grid boundaries.

class Interpolate
e fine to coarse and coarse to fine interpolation of patches.
e supports any refinement ratio (1,2,3,4,...) and any order of accuracy.

AMR components of Overture

class InterpolateRefinements

e high level function to interpolate the solution from one AMR overlapping
grid to another AMR overlapping grid.

e update all AMR ghost points and hidden coarse grid points on an AMR
overlapping grid.

Ogen

e the overlapping grid generator knows how to update interpolation points on
AMR grids.

Elliptic Solvers

e Oges can be used to solve for the solution on the entire AMR hierarchy.
Oges is an interface to sparse solvers such as PETSc.

e Ogmg multigrid solver will be extended to AMR, work with Bobby Philip
(LANL).

AMR Performance on two problems:

Quarter plane Expanding channel
time steps 12,418 21,030
grids (min,ave,max) (2,57,353) (5,274, 588)
points (min,ave,max) | (2.0e5,9.2e5,1.9e6) || (1.2e5,6.4e5,1.3e6)
s/step % s/step %
compute Au” . 13.85 92.7 11.50 82.4

@]
boundary conditions 12 .8 .14 1.0

interpolation (overlapping) .09 .6 .45 3.2
AMR regrid /interpolation .54 3.6 11.6
other .34 2.3 .25 1.8

total 100

Table 2: CPU time (in seconds) per step for various parts of the code and their

percentage of the total CPU time per step.

amrHype: Solve a convection diffusion equation with AMR

e a small code demonstrating the use of AMR with Overture.
e uses the method of analytic solutions for testing accuracy.
Sample uses of Overture AMR functions:

CompositeGrid cg,cgNew;
realCompositeGridFunction u,error,uNew;
ErrorEstimator errorEstimator;
errorEstimator. computeAndSmoothErrorFunction (u,error) ;
Regrid regrid;
regrid.regrid(cg,cgNew, error, errorThreshold);
Ogen ogen;
ogen.updateRefinement (cgNew) ;
uNew.updateToMatchGrid (cgNew) ;
InterpolateRefinements interp;

interp.interpolateRefinements (u,uNew);

Testing using the method of analytic solutions

The usefulness of this technique cannot be overstated.

Given a PDE boundary value problem
L(ut, Uy, Uy, ...) = F(x,1)
one can create an exact solution, U(x,t) by choosing
F(x,t) = L(U:, Uz, Uy, . ..)

The Overture OGFunction class defines a variety of exact solutions and their
derivatives to support the method of analytic solutions. For example one could define a
polynomial, trigonometric polynomial, or pulse function

1 1
t) = (2°+ 2zy +y° + 2°)(1 + it -+ §t2)

U(x,t) = cos(mwz) cos(rwy) cos(mwz) cos(wsmt)
U(x,t) = ao exp(—a1[x = b(®)[|*") , b(t) = co + vt
The polynomial solution is particularly useful since this solution is often an exact

solution to the discrete equations on rectangular grids. The pulse function is good for
AMR.

amrHype: Solve a convection diffusion equation with AMR

U t=5.00e-01, dt=378e—-03, nu=1.00e—02, onu=0.00e+00 U t=1.50e+00, di=3.77e—-03, nu=1.00e—-02, anu=0.00e+00

Traveling pulse analytic solution

Detonation in an Expanding Channel.

(T}

k2 5 T W N A

Temperature, t = 3 : Temperature, t = 5

Radical fraction y, t =5

V4
v/
y
-] # | |

Product fraction \, t = 3 Product fraction A\, t =5

i
i
I " |

Temperature, t = 10

//./
v/

\
leading shock

/

!

. Mach stem

Figure 2: Closeup of the density near the Mach stem. The boundaries of the

refinement grids are shown.

85

Oges: Overlapping Grid Equation Solver

The Oges class can be used to solve the systems of sparse equations that result from
discretising boundary value problems (elliptic problems, implicit time-stepping) on

overlapping grids.

Oges is an interface to various solvers packages:

sparse direct solvers (e.g. Yale)
sparse iterative solvers (SLAP, PETSc)
multigrid solver (Ogmg)

The primer example7 shows the use of Oges:

féélCompositeGridFunction coeff(cg,stencilSize,all,all,all);
CompositeGridOperators op(cg); // create some differential operators

éééff=op.laplacianCoefficients()+op.XCoefficients(); // here is the operator

ééés solver(cg); // create an Oges solver
solver.setCoefficientArray(coeff); // supply coefficients

ééiver.solve(u,f);

Here the sparse matrix for the operator coeff = A + 0, is formed.

Ogmg: Overlapping Grid Multigrid Solver

The Ogmg solver can be used to solve scalar elliptic boundary value problems.
Some of it's key features are

{» coarse grid generation - robust generation of “any” number of multigrid levels.
{> smoothers
{» variable sub-smooths per component grid
{> interpolation-boundary smoothing
{> over-relaxed Red-Black smoothers
> Galerkin coarse grid operators
> fourth-order accuracy
{» numerical boundary conditions for Dirichlet and Neumann/mixed problems

The Multigrid method is potentially a near optimal approach

Some care is required to achieve text-book convergence rates for overlapping grid

problems.

Method # operations in 2D

Gaussian elimination O(N3)
Gaussian elimination (band version) O(N?)
Jacobi iteration O(N?loge)
Gauss-Seidel iteration O(N?loge)
Successive over-relaxation (SOR) O(N3/2 loge)
Conjugate gradient (CG) O(N3/2]og)
Multigrid (iterative) O(N loge)
Multigrid (full-multigrid) O(N)

Complexity of different solution approaches for a 2D Poisson problem, from Trottenberg,
Oosterlee and Schiiller [17]. The number of unknowns is N and the convergence tolerance is e.

Multigrid and Overlapping Grids: Background

The first overlapping grid computations were apparently performed by G. Starius, a
student of Heinz-Otto Kreiss, who solved elliptic [13](1977) and hyperbolic [14](1980)
problems.

The first MG solver for overlapping grids seems to be the work of J. Linden reported in
Stiiben and Trottenberg [16](1982) who showed results for a model problem.

Chesshire and Henshaw [5, 7](1985) extended the CMPGRD overlapping grid
generator [1] to generate multigrid levels for general two-dimensional domains. These
grids were used to solve elliptic problems in two dimensions for general domains and
showed good multigrid convergence rates.

Due to the difficulty in generating the interpolation equations to couple the equations on
the coarse grids, most if not all other researchers have left the coarse grids uncoupled,
applying a zero Dirichlet or Neumann type boundary condition at interpolation points,
Tu & Fuchs [18, 19], Hinatsu & Ferziger [11], Zang & Street [20]. This approach has
been called incomplete multigrid (ICMG) by Hinatsu & Ferziger. In general it
would seem that ICMG can converge no better than an overlapping Schwartz iteration

with a convergence rate 1 — O(§) where § is the relative width of the overlap.

Multigrid Operators

The multigrid algorithm for overlapping grids remains basically the same as for a single

grid. Introduce the following operators

S; : the composite smoothing operator, an iteration that approximately solves the
equation and is effective at reducing the high frequency components of the error.
. restriction operator, the operator that transfers a grid function from the fine grid
to the coarse grid.
. prolongation operator, the operator that transfers a grid function from the coarse

grid to the fine grid.

Multigrid Algorithm

while not converged do

smooth v times
Vh < S}Vll Vh

form the defect and transfer to the coarser grid
fir =1 (fa — Lnvn)

“solve” the defect equation
AH’UH ~ bH

correct the fine grid solution from the coarse grid solution
vn — vn + Ivom

smooth 5 times
Vh < S}VLQ Vh

end while
The coarse grid equations can be approximately solved in a recursive many by using an

even coarser grid. On the very coarsest grid the equations are solved with a sparse

matrix solver using either an iterative or direct method.

New robust grid coarsening algorithm

ey W S

L

]
=
P T T atE
L]
R S B 1

racy red\uced
N
@R~

N

]

ST
1
i I

J(>/
\tl I

An overlapping grid for some shapes, 4 multigrid levels.

Multigrid solution to Poisson’s equation, 3.4 million grid points

grid soluti

Multigrid Convergence

—e— Grid: shapes.bbmg5. 03/06/18
BC: DDDD+PPDI+PPDI+PPDI....
Second-order accurate.
3.4e+06 points. 5 levels.
ave CR=0.013, ECR=0.52

maximum residual

3 4
multigrid cycle

Ints

0.55, F[2,1]

id po
0.046, ECR=

5.4e+06 points. 4 levels.
5

BC: DDDDDD+IIIIDI+IIIDI+....
Second-order accurate.

lon gr

—e— Grid: multiSphere3. 03/06/26

CR
4
multigrid cycle

Multigrid Convergence

4 m

5

Ion

[enpisal wnwixew

-
(qV)
)
O
)
n

Isson’

ion to Po

igrid solut

Mult

Ogmg: multigrid solver for overlapping grids, solving
Poisson’'s equation

CPU time (s) storage

Solver i ||res||oc | total | setup | solve | reals/pt

biCG-stab, ILU(5)
gmres ILU(5)
biCG-stab, ILU(0)
gmres 1LU(0)

biCG-stab, ILU(2) | elb | 2.0e6 | 46 | 4.1e-10 | |222. 116 70.3
biCG-stab, ILU(0) | elb | 2.0e6 | 113 | 3.7e-10 | 264. 77. | 187 41.6
gmres(20), ILU(O) | elb | 2.0e6 | 218 | 5.2e-10 | 306. 70. | 236 56.5

Table 3: A comparison of the multigrid solver Ogmg to some Krylov based solvers
(PETSc). The cic grid is a two-dimensional circle-in-a-channel, the elb grid is
ellipsoid-in-a-box.

Multigrid Convergence

subAndFins2, 3.6e+06 points, 3 levels.

WI[1,1], CR=.122, ECR=.62

maximum residual

W[2,1], CR=.087, ECR=.65

3 4 5
multigrid cycle

Left: Grid for a submarine-in-a-box, Right: convergence history.

CG: Composite-Grid Solvers

Cgins: Incompressible Navier-Stokes solver
second and fourth-order order time-accurate solver
pressure-Poisson formulation
line-implicit pseudo-steady state solver (local At)
moving grids
Cgcns: Compressible Navier-Stokes solver
Jameson-style artificial diffusion (with Don Schwendeman, RPI)

moving grids and AMR

Cgcns: Reactive Euler-equation solver
High-order Godunov method (Don Schwendeman, RPI)
moving grids and AMR (in 2D)

A few reaction mechanisms: one-step, chain branching,
ignition-and-growth. and a few equations of state; ideal Gas, JWL.

A multi-fluid formulation (Jeff Banks, RPI).

The incompressible Navier-Stokes equations in velocity-divergence form are
u: + (u- V)u+ Vp = vAu,
V-u=0.

In cgins the equations are solved in the velocity-pressure form

u:+ (u-V)u+ Vp —vAu —f
Ap— (Vu-uz+Vov-uy+Vw-u,) —Cq(v)V-u—-V.f

B(u,p)
V-u 0

x € 02

)
u(x,0) = up(x) att =20

There are d boundary conditions, B(u,p) = 0, in d space dimensions. On a no-slip
wall, for example, u = 0. The boundary condition V - u = 0 is added as a boundary
condition for the pressure. With this extra boundary condition it follows that the above

problem is equivalent to the velocity-divergence formulation. The term Cy(v)V - u is
used to damp the divergence.

Cgins: discretization of the incompressible Navier-Stokes equations

Let V,; and P; denote the discrete approximations to u and p so that
Vi ~ u(xq;) , PZ ~ p(Xi) .

After discretizing in space (using the mapping-method described earlier) the equations

take the form

4V, + (Vi - Va)Vi+ ViP — vALV; — f(xi,1)

ApPi = ViV DmaVi—CaqiVh - Vi — V- f(x,1)

B(V,,P) =
Vi -Vi = 0

X; € 0Qp,

V(XZ', O) — Uo(Xi) att =20

Extra numerical boundary conditions are added for the second- or fourth-order accurate

spatial discretisations.

Cgins: time-stepping with Adams predictor-corrector methods

The incompressible N-S equations can be written as
Uy = f(uap)

where the pressure p is considered to be function of u. A method-of-lines approach may

be used to integrate the equations.

The second-order accurate Adams predictor-corrector time stepping method for the

INS equations can be chosen with the “adams PC" option. It is defined by
u? —u" 3 |

At 2 2
n+1 un

At

where one correction step has been used (one may optionally correct more than one

u

1, 1
EP g
2t T3

time).

For fourth-order accuracy in space, one may choose a time-stepping method that is
order 2,3 or 4.

100

Cgins: stability regions for some Adams PC methods

Stability Region: 2—2 Predictor Corrector Stability Region: 4—4 Predictor Corrector

Stability regions for the predictor corrector methods. Left: second-order method, PECE
mode. Right: fourth-order method, PECE mode. The region of stability is inside the

contour level value of 1.

101

Incompressible flow computations with cgins.

I 7 =
| Lkl rgle
L IS\ = 7 A
f 3 e | . - |
NS NS - =0/
) - — "
il L ¢ /
. W 7
\ =

NN

ik

102

Cgcns: Reactive Euler Equations

Governing equations (2-D):

u; + f(u)z +g(u)y = h(u)

where
ou
pu® + p
pUY
u(pE + p)
PUA

Variables:

pU

PUA

p = density (u, v) = velocity

p = pressure

A = n mass fractions

1
E=e+ §(u2—|—v2)

E = total energy

R = n reaction rates

internal energy per unit mass

e=e(p,p,\) =

(as specified by an equation of state)

103

Cgcns: Reactive Euler Equations

To reactive Euler equations are written in conservation form in terms of the unit square
coordinates, r = (r1,72)

1, 0F 0G

u; +

) = h,

t 3(87“1 * (9?“2

F o= JVr-(fg)
G JVry - (f7 g)a

ox
J = det[—].
or
This new system is solved on the unit square and discretised with a second-order
Godunov method. The reaction terms are treated with a sub-cfl time-step Runge-Kutta

method with error control. This discretization was developed by Don Schwedeman
(RPI) [10].

104

Adaptive overlapping grids

1.25

t

.75

t

105

Current work: moving geometry
> The governing equations are written in the moving coordinate system

> Support for (1) specified motion, (2) rigid-body motion with forces and
torques determined from the flow.

> The grids are moved at every time step and the interpolation points are

recomputed.

Moving valves (INS) Falling cylinders (INS) Rotating body (INS)

107

Current work: three-dimensions

| Fuler rho
t=0.400, dt=3.33e—-03

Euler
0.700, dt=8.3Fe—04

Shock hitting a sphere (Euler Sphere moving in a tube
° 9P () P with AM Rg(Euler)

108

Current work: parallel versions of the CG solvers

> Grids can be distributed across one or more processors.
{> Distributed parallel arrays using P++ (K. Brislawn, B. Miller, D. Quinlan)

{ P++ uses Multiblock PARTI (A. Sussman, G. Agrawal, J. Saltz) for block
structured communication with MPI (ghost boundary updates, copies
between different distributed arrays)

> A special parallel overlapping grid interpolation routine has been written.

NP | sec/step | ratio

1 8.4 1.
2 4.3 2.

Table 4: Shock hitting a cylinder (no AMR), 1.1 million grid-points, Dell worksta-
tion 2.2GHz Xeon.

109

Running the CG solvers...

incompressible NS: 1=8.00e+00, p
dt=2.3e-02, nu=25e-02

Snapshot of cgins showing the run time dialog menu. The figure shows two
falling bodies in an incompressible flow (using the command file twoDrop.cmd).

110

A cgins command file (script)...

Two dropping cylinders

Name of the grid:

twoDrop.hdf

Equations to solve:

incompressible Navier Stokes
ixit

show file options
open
twoDrop.show
frequency to flush

exit
*

turn off twilight zone
project initial conditions
*

turn on moving grids

detect collisions
specify grids to move
rigid body

density
5
molments of inertia
done
drop
done
rigid body
density
5
molments of inertia
done
drop2
done
done
* use implicit time stepping
implicit
choose grids for implicit
all=implicit
channel=explicit

done
*

111

pde parameters
nu

.025
* turn on gravity
gravity
0. -1. 0.
done
*

boundary conditions
all=noSlipWall
channel(1,1)=inflowWithVelod]ty(
channel(0,1)=outflow

done

*

initial conditions
uniform flow
p=1.

exit

*

final time (tf=)
8. 6.

timfs to plot (tp=)

Demo: cgins, cgns

e INS: flow past a cylinder (or two).

e INS: two falling cylinders.
e Euler: shock hitting a cylinder (using AMR).

112

References

[1] G. Chesshire and W.D. Henshaw. Composite overlapping meshes for the solution of partial
differential equations. J. Comp. Phys., 90(1):1-64, 1990.

[2] G. Chesshire and W.D. Henshaw. A scheme for conservative interpolation on overlapping
grids. SIAM J. Sci. Comput., 15(4):819-845, July 1994.

[3] B. Gustafsson, H.-O. Kreiss, and A. Sundstrom. Stability theory of difference

approximations for mixed initial boundary value problems. |l. Mathematics of
Computation, 26(119):649-686, 1972.

[4] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time Dependent Methods and
Difference Methods. John Wiley and Sons Inc., 1995.

[5] W.D. Henshaw. Part Il: Composite Overlapping Grid Techniques. PhD thesis, Dept. of
Applied Mathematics, California Institute of Technology, 1985.

[6] W.D. Henshaw. A fourth-order accurate method for the incompressible Navier-Stokes
equations on overlapping grids. J. Comp. Phys., 113(1):13-25, July 1994.

[7] W.D. Henshaw and G. Chesshire. Multigrid on composite meshes. SIAM J. Sci. Stat.
Comput., 8(6):914-923, 1987.

[8] W.D. Henshaw, H.-O. Kreiss, and L.G.M. Reyna. A fourth-order accurate difference
approximation for the incompressible Navier-Stokes equations. Comput. Fluids,
23(4):575-593, 1994,

113

William. D. Henshaw. On multigrid for overlapping grids. Research Report
UCRL-JRNL-201940, Lawrence Livermore National Laboratory, 2003. Sumitted for
publication.

William. D. Henshaw and Donald W. Schwendeman. An adaptive numerical scheme for
high-speed reactive flow on overlapping grids. J. Comp. Phys., 191:420-447, 2003.

M. Hinatsu and J.H. Ferziger. Numerical computation of unsteady incompressible flow in
complex geometry using a composite multigrid technique. International Journal for
Numerical Methods in Fluids, 13:971-997, 1991.

H.-O. Kreiss and J. Lorenz. Initial-Boundary Value Problems and the Navier-Stokes
Equations. Academic Press, 1989.

G. Starius. Composite mesh difference methods for elliptic and boundary value problems.
Numer. Math., 28:243-258, 1977.

G. Starius. On composite mesh difference methods for hyperbolic differential equations.
Numer. Math., 35:241-255, 1980.

J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. \Wadsworth
and Brooks/Cole, 1989.

K. Stiiben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model

problem analysis and applications. In W. Hackbusch and U. Trottenberg, editors,
Multigrid Methods, pages 1-176. Springer-Verlag, 1982.

U. Trottenberg, C.W. Oosterlee, and A. Schuller. Multigrid. Academic Press, London,

114

2001.

[18] J. Y. Tu and L. Fuchs. Overlapping grids and multigrid methods for the three-dimensional
unsteady flow calculations in IC engines. International Journal for Numerical Methods in
Fluids, 15(6):693—-714, 1992.

[19] J. Y. Tu and L. Fuchs. Calculation of flows using three-dimensional overlapping grids and

multigrid methods. International Journal for Numerical Methods in Engineering,
38:259-282, 1995.

[20] Y. Zang and R.L. Street. A composite multigrid method for calculating unsteady

incompressible flows in geometrically complex domains. International Journal for
Numerical Methods in Fluids, 20:341-361, 1995.

115

